
Eliminating first-order internal multiples with downward reflection at the shallowest interface: theory
and initial examples
Wilberth Herrera and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

The Inverse Scattering Series (ISS) is capable of directly
achieving all processing objectives through specific-task sub-
series and without any subsurface information. In this work
a subseries of the ISS is isolated, with the specific task of re-
moving internal multiples of first-order, with downward reflec-
tion at the shallowest reflector. The algorithm predicts both the
phase and exact amplitude of the internal multiples and does
not modify any primary; therefore the internal multiples are
removed surgically. This algorithm may be relevant and pro-
vide added value when one of the internal multiples under dis-
cussion is interfering destructively with (or is proximal to) a
primary, and the attenuation of the internal multiple provided
by previous algorithms is not adequate for the clean removal
of the multiple and not touching the primary. To show how
the elimination subseries proposed in this work deals with this
challenging situation, an analytic example with three interfaces
is included, with one of the relevant first-order internal multi-
ples interfering destructively with the primary generated at the
third reflector. We show in particular how the interfering in-
ternal multiple is eliminated with no damage to the amplitude
or the phase of the primary, as is expected from a method for
surgical removal of internal multiples.

INTRODUCTION

Using the ISS and the concept of specific-task subseries, a mul-
tidimensional direct algorithm was derived in Araújo (1994),
Araújo et al. (1994) and Weglein et al. (1997), to predict and
attenuate internal multiples present in the data of a seismic
experiment. Prediction methods are followed by the energy-
minimization adaptive subtraction to try to accommodate all
shortcomings in the prediction. However, there are situations
in which the energy-minimization adaptive subtraction tech-
nique is not suitable anymore, and the attenuation of internal
multiples is not enough for a correct interpretation of the seis-
mic data. An example of this challenging situation for the oil
industry can arise when an internal multiple is interfering de-
structively with (or is proximal to) a primary associated to a
target e.g. subsalt targets. This situation is often present in
onshore exploration, but it can also happen offshore. While
the energy-minimization adaptive subtraction technique is of
value for isolated multiples, in this case it might also affect the
primary interfering with the internal multiple.

Therefore, it is important to develop new algorithms with en-
hanced capabilities. In response to this need, Ramı́rez and
Weglein (2005) and Ramı́rez (2007) discuss early ideas for
moving attenuation of internal multiples towards elimination
through higher order terms in the ISS. Those ideas and con-
cepts are here progressed and developed leading to a subseries
which surgically removes at the same time all internal mul-

tiples of first-order having their single downward reflection
generated at the shallowest reflector (we will refer to those
events as internal multiples generated at the shallowest reflec-
tor/interface).

As with any other subseries from the ISS previously isolated,
this algorithm requires no subsurface information. We also il-
lustrate how to use this subseries in a three-interface analytic
model, to surgically remove the first-order internal multiple
generated at the shallowest interface and with both upward re-
flections generated at the second reflector. The parameters of
the model are chosen to allow the internal multiple to interfere
destructively with the primary generated at the third reflector.

REVIEW OF THE LEADING-ORDER ATTENUATOR

The Inverse Scattering Series (ISS) is a direct inversion method
which can in principle determine, in seismic applications, sub-
surface properties of the earth using only the measured data D
in a seismic experiment, and a Green’s function for a chosen
reference medium. Unfortunately, with no a priori informa-
tion of the subsurface of the earth, the convergence is highly
restricted (Carvalho 1992).

However, specific-task subseries with different objectives in
the chain of data processing can be isolated, and have better
convergence properties than the entire ISS. In regard of inter-
nal multiples, a subseries was isolated in Araújo (1994) and
Weglein et al. (1997), with the specific task of the attenua-
tion of internal multiples of all orders (the order of an internal
multiple is defined as the number of downward reflections it
experiences anywhere during its travel time. See Figure 1).
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Figure 1: First-order internal multiple: we say, based on the
position where reflections occur, that the interfaces generat-
ing a first-order internal multiple are in a “lower-higher-lower”
configuration.

This Internal Multiple Attenuation Subseries (IMAS) requires
that 1) the data D have been deghosted, 2) the reference wave
field and free-surface multiples have also been removed from
the data and 3) the source wavelet has been deconvolved. The
first term of this subseries is the result of the uncollapsed Stolt’s
migration of the data using the water speed, c0. The second
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An elimination algorithm for internal multiples of first-order generated at the shallowest reflector

term, conveniently named the leading-order attenuator, atten-
uates all first-order internal multiples at a single step and is of
third-order in the measured data.

It turns out that the elimination subseries isolated in this work
shares with the IMAS the first two terms, i.e., the data migrated
at water speed and the leading-order attenuator. However, both
subseries differ from each other for higher-order terms. Hence,
we review here the leading-order attenuator, and in the next
section we explain how to isolate the higher-order contribu-
tions to the elimination subseries.

We will restrict our discussion to a 1D earth with data gener-
ated by waves at normal incidence. In this case, the analytic
expression for the leading-order attenuator is (Weglein et al.
2003)

b3(k) =
∫

∞

−∞

dzeikzb1(z)
∫ z−ε

−∞

dz′e−ikz′b1(z′)×

∫
∞

z′+ε

dz′′eikz′′b1(z′′), (1)

where ε is a small and positive parameter introduced to ensure
the characteristic “lower-higher-lower” configuration for first-
order internal multiples, and to avoid configurations including
contributions from the self-interactions, which are defined by
the conditions z′′ = z′ and z′ = z in eq. (1). Also, the input
b1(z) of the leading-order attenuator is the first term of the
subseries, i.e., the deghosted data migrated at water speed us-
ing uncollapsed Stolt’s migration. The subindexes in b1(k) and
b3(k) mean that they are of first-order and third-order respec-
tively in the data.

In the following, we will restrict to the 1D model shown in
Figure 2, where Zi denotes the depth of the i-th. reflector for
i = 1,2,3.

1 
The Leading-order attenuator: a three-interface example 
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Figure 2: A 1D earth model, with three interfaces. The first
interface, with depth Z1 is the water bottom. The second inter-
face, with depth Z2, can be identified with the top salt and the
third interface, with depth Z3, can be identified with the target.

We consider data made of primaries and internal multiples cre-
ated by spike-waves at normal incidence: D(t) = R1δ (t−t1)+
R′2δ (t − t2) + R′3δ (t − t3) + IM, with R′2 = T01R2T10, R′3 =
T01T12R2T21T10. Also ti is the travel time of the primary as-
sociated with the interface with depth Zi, Ri is the reflection
coefficient experienced by a wave when upward reflected at
the interface with depth Zi, and Ti j represents the transmission
coefficient experienced by a wave traveling from the acoustic
medium with parameters (ci,ρi) to the acoustic medium with
parameters (c j,ρ j).

In this case, the input of the leading-order attenuator, eq. (1),
becomes:

b1(z) = R1δ (z− z1)+R′2δ (z− z2)+R′3δ (z− z3)+ · · · , (2)

where zi = c0ti/2 is the position of the reflector with depth
Zi, after Stolt’s uncollapsed migration∗. The zi are usually re-
ferred to as pseudodepths, and we say that eq. (2) is in the
pseudodepth domain.

Although the input data of the leading-order attenuator, eq. (2),
includes primaries and internal multiples, we only consider the
effect of the primaries. Initial steps towards the inclusion of
internal multiples are addressed in Ma and Weglein (2012) and
Liang and Weglein (2012). In the time domain the result for
the evaluation of eq. (1), using eq. (2) is (See Weglein et al.
2003)

b3(t) =−T01T10 ∗ (IM) j=1 + · · · , (3)

where (IM) j=1 is the sum of the contributions to the data of
all first-order internal multiples generated at the shallowest re-
flector of the model:

(IM) j=1 =−T01R2R1R2T10δ (t− (2t2− t1))

−2T01R2R1T21R3T12T10δ (t− (t2 + t3− t1))

−T01T 2
12R3R1R3T 2

21δ (t− (2t3− t1)). (4)

Consider now the contribution of the data and the leading-
order attenuator b3(t) to the IMAS:

b1(t)+b3(t) = P+[1−T01T10](IM) j=1 + · · · , (5)

where P stands for primaries. As 0 < T01T10 < 1, it follows
from (5) that the amplitude contribution of (IM) j=1 is reduced
by an amount T01T10 with respect to their contribution pre-
vious to the addition of b3(t). T01T10 is referred as attenuator
factor. An analogous situation is present for the internal multi-
ple with downward reflection at the second reflector. However,
in the present work we will only need the effects of b3(t) on
(IM) j=1.

THE ELIMINATION SUBSERIES

In the past section we showed, using the model of Figure 2,
how the leading-order attenuator decreases the amplitude con-
tribution for first-order internal multiples generated at the shal-
lowest interface, by an amount of T01T10. This means that to
promote this attenuation to an elimination, the contribution
of higher-order terms from the elimination subseries need to

∗For normal incidence of a spike-wave, the relation between D(t) and b1(z) is as follows:
1) Fourier transform D(t), 2) write the result, D(ω), in terms of zi = c0ti/2 and the vertical
wavenumber k = 2ω/c0 to end with a function D(k) and 3) define b1(z)≡F−1[D(k)] where
F−1 denotes the inverse Fourier transform
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An elimination algorithm for internal multiples of first-order generated at the shallowest reflector

move this attenuator factor to the unity: when those higher-
order contributions are added to the initial attenuation provided
by b3(t), the predicted amplitude will exactly match (IM) j=1.
Hence, the collective contribution of the terms in the elimina-
tion subseries will remove (IM) j=1 from the data.

To isolate terms from the ISS with the right contributions, it
is convenient to express 1 in terms of R1. For this purpose the
following geometric series expansion is useful:

1 =
T01T10

T01T10
=

T01T10

(1−R2
1)

= T01T10(1+R2
1 +R4

1 + · · ·). (6)

Notice that after distributing the product on the right hand
side of eq. (6), the first term is the initial attenuation pro-
vided by the leading-order attenuator. Therefore, the remain-
ing terms are the amplitude contribution required from higher-
order terms, in any subseries claiming to promote the attenua-
tion to elimination. We will focus in isolating the term with at-
tenuation factor T01T10 ∗R2

1, the second term on the right hand
side of eq. (6). We also want to predict the exact travel time
of the internal multiples, i.e., we are looking for a term with
contribution equal to T01T10 ∗R2

1 ∗ (IM) j=1.

Upon inspection of the ISS, we arrive to:

b(IM) j=1
5 (k)≡

∫
∞

−∞

dzeikzb1(z)
∫ z−ε

−∞

dz′e−ikz′F [b1(z′)]×

∫
∞

z′+ε

dz′′eikz′′b1(z′′). (7)

F [b1(z′)] is given by

F [b1(z′)] = F−1
[∫

∞

−∞

dzeikzb1(z)
∫ z+ε

z−ε

dz1e−ikz1 b1(z1)×

(8)∫ z1+ε

z1−ε

dz2eikz2 b1(z2)

]
,

where F−1 means inverse Fourier transform, and the subindex
in b(IM) j=1

5 means that it is of fifth-order in the data. The ε is
applied in this context to include the self-interactions z2 = z1
and z1 = z, rather than to avoid them, as is the case for the
leading-order attenuator.

Upon evaluation of eqs. (7) and (8) using the primaries in
eq. (2), the result in the time domain includes the expected
contribution, plus additional terms which contribute to further
attenuation of (presumably they also start the elimination of)
other first-order internal multiples: b(IM) j=1

5 (t) = −T01T10 ∗
R2

1 ∗ (IM) j=1 + · · · .

Consider now the sum of the data, the leading-order attenuator
and b(IM) j=1

5 :

b1(t)+b3(t)+b(IM) j=1
5 (t) =

P+[1−T01T10(1+R2
1)](IM) j=1 + · · · . (9)

Eq. (9) makes evident that in this case the attenuation fac-
tor T01T10 is changed to T01T10(1+R2

1). This attenuation con-
tains the first and second terms of the geometric series on the
right hand side of eq. (6). Hence, the expression proposed for
b(IM) j=1

5 in eqs. (7) and (8) correctly reproduces the required
amplitude contribution to move the attenuation of (IM) j=1 a
step closer to elimination.

Higher-order contributions for the elimination subseries are
analogous to eq. (7) but with an appropriate F [b1(z′)], e.g.

the function F [b1(z′)] for the term following b(IM) j=1
5 , denoted

b(IM) j=1
7 , and with contribution T01T10 ∗R4

1 ∗ (IM) j=1 is

F [b1(z′)] = F−1
[∫

∞

−∞

dzeikzb1(z)
∫ z+ε

z−ε

dz1e−ikz1 b1(z1)×

(10)∫ z1+ε

z1−ε

dz2eikz2 b1(z2)

∫ z2+ε

z2−ε

dz3e−ikz3 b1(z3)×∫ z3+ε

z3−ε

dz4eikz4 b1(z4)

]
.

Following this line of thinking, further contributions to the
elimination of (IM) j=1 can be isolated to get the elimination
subseries:

b(IM) j=1(t) = b1(t)+b3(t)+b(IM) j=1
5 (t)+b(IM) j=1

7 (t)+ · · · .
(11)

We can use as many terms as we need, in order to achieve a
desired degree of accuracy in the prediction of an internal mul-
tiple (of first-order and generated at the shallowest reflector).

APPLICATION OF THE ELIMINATION SUBSERIES TO
AN ANALYTIC MODEL

In this section we will use an analytic model in which an in-
ternal multiple of first-order is interfering destructively with a
primary. This is to show the usefulness of the eliminator sub-
series by surgically removing the internal multiple.

The analytic model we will focus is the three-interface model
of Figure 2, with specific values for the acoustic parameters
assigned as (1500m/s,1000kg/m3), (2280m/s,1000kg/m3),
(9000m/s,1700kg/m3) and (9900,1578kg/m3) for (c0,ρ0),
(c1,ρ1), (c2,ρ2) and (c3,ρ3) respectively. The Primary cre-
ated at the interface with depth Zi is denoted Pi. First-order
internal multiples are denoted as IMi jk with j indicating the
reflector in which the downward reflection is generated; i and
k indicate the reflectors where the first and second upward re-
flections are generated respectively.
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An elimination algorithm for internal multiples of first-order generated at the shallowest reflector

The interfering events are the primary P3 and the internal mul-
tiple IM212, whose common travel time is 2.2947s. The am-
plitudes for P3 and IM212 are 0.0045 and -0.1084 respectively.
A trace is shown in Figure 3, from which the amplitude of the
combined event P3+IM212 can be read as -0.1039: the polarity
is opposite to that of the primary.
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Figure 3: Data of the model. This data includes primaries and
the relevant internal multiples of first order.

Next is the application of b3(t) to attenuate internal multiples
of first-order. For the interfering event the amplitude after the
action of b3(t) is -0.0001 and hence the amplitude attenuation
is not enough to change the polarity of the interfering event.
This might lead to assign to the primary an incorrect polarity.

From the above paragraph it is evident that improvement in
the predicted amplitude for IM212 is necessary. This is possi-
ble if we include further terms from the elimination subseries
isolated in the previous section. This is shown in Figure 4,
in which the effect of the third term, b(IM) j=1

5 (t), has been in-
cluded in addition to b3(t).

Data  (after elimination)  
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Figure 4: Data after the action of both, the leading-order atten-
uator and b(IM) j=1

5 (t).

The primary P3 is now with its original amplitude and polarity,
0.0045, which means that the interfering internal multiple has
been removed. However, for more complex models the conver-
gence can be slower, and more terms might be needed. Also,

from Figure 4, it can be noticed that neither the travel times
nor the amplitudes of the primaries P1 and P2 are changed, as
expected from a method for surgical removal of internal mul-
tiples.

DISCUSSION AND CONCLUSIONS

We have isolated from the ISS a subseries whose task is to
eliminate first-order internal multiples generated at the shal-
lowest interface, and also attenuates internal multiples from all
deeper reflectors. This elimination subseries predicts the phase
and the exact amplitude of the internal multiples and does not
modify any primary. Therefore, the surgical removal of such
internal multiples is achieved.

We have also applied the eliminator subseries to an analytic
example with three interfaces. The configuration is set up to
produce an internal multiple (with downward reflection at the
shallowest reflector) interfering destructively with the primary
generated at the third reflector, in a way that the leading-order
attenuator is not enough to let the primary show up in the data
with its correct polarity. We show how the action of the third-
order and fifth-order contributions of the algorithm remove the
interfering internal multiple, making the primary to appear in
the trace with its original amplitude and polarity. In practice
however, it is not possible to know a priori the number of terms
that are necessary to eliminate the interfering internal multi-
ple. The recipe is to apply to the data one term at a time
until no change is noticed in the primary. Although higher-
order terms will imply an increased computational cost (more
integrals need to be calculated), if the interfering primary is
suspected to be the target, then the investment might be worth-
while, as a situation involving a drilling or no drilling deci-
sion might be involved and processing costs pale compared to
drilling dry holes.

Interfering events are common in onshore exploration, but they
may also occur offshore. Therefore, the algorithm in this work
may provide added value in those challenging geologic config-
urations in which techniques such as the energy-minimization
adaptive subtraction fails.

Further research in this topic includes extending the method
beyond the normal incidence assumption of the present work,
and to derive the corresponding multidimensional version of
the subseries presented here. Additionally, current challenges
in exploration seismology might also require the removal of
other internal multiples of first-order, generated beneath the
shallowest reflector. Hence, a more generalresearch goal is to
isolate a subseries, with the specific task of the elimination of
first-order internal multiples generated at all reflectors.
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